您的位置首页生活百科

抛物线焦点通径怎么求

抛物线焦点通径怎么求

的有关信息介绍如下:

抛物线焦点通径怎么求

抛物线标准方程:

y2 =2px(p>0)(开口向右);

y2 =-2px(p>0)(开口向左);

x2 =2py(p>0)(开口向上);

x2 =-2py(p>0)(开口向下);

焦点坐标为(p/2,0)

共同点:

1、原点在抛物线上,离心率e均为1 ;

2、对称轴为坐标轴;

3、准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。

扩展资料:

对于抛物线y1=2px,p>0时,定义域为x≥0,p<0时,定义域为x≤0;对于抛物线x1=2py,定义域为R。

值域:对于抛物线y1=2px,值域为R,对于抛物线x1=2py,p>0时,值域为y≥0,p<0时,值域为y≤0。

抛物线标准方程:y1=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2。

由于抛物线的焦点可在任意半轴,故共有标准方程y1=2px,y1=-2px,x1=2py,x1=-2py。

参考资料来源: