您的位置首页百科知识

一元二次方程公式法的方法与技巧?

一元二次方程公式法的方法与技巧?

的有关信息介绍如下:

一元二次方程公式法的方法与技巧?

1.开平方法

形如(X-m)²=n (n≥0)一元二次方程可以直接开平方法求得解为X=m±√n。

①等号左边是一个数的平方的形式而等号右边是一个常数。

②降次的实质是由一个一元二次方程转化为两个一元一次方程。

③方法是根据平方根的意义开平方。

2.配方法

用配方法解一元二次方程的步骤:

①把原方程化为一般形式;

②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;

③方程两边同时加上一次项系数一半的平方;

④把左边配成一个完全平方式,右边化为一个常数;

⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

3.因式分解法

是利用因式分解的手段,求出方程的解的方法,是解一元二次方程最常用的方法。

分解因式法的步骤:

①移项,将方程右边化为(0);

②再把左边运用因式分解法化为两个(一)次因式的积;

③分别令每个因式等于零,得到(一元一次方程组);

④分别解这两个(一元一次方程),得到方程的解。

4.求根公式法

用求根公式法解一元二次方程的一般步骤为:

①把方程化成一般形式aX²+bX+c=0,确定a,b,c的值(注意符号);

②求出判别式△=b²-4ac的值,判断根的情况.

若△<0原方程无实根;若△>0,X=((-b)±√(△))/(2a)

5.图像法

一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。

当△>0时,则该函数与x轴相交(有两个交点)。

当△=0时,则该函数与x轴相切(有且仅有一个交点)。

当△<0时,则该函数与轴x相离(没有交点)。