您的位置首页百科问答

指数函数的图像和性质

指数函数的图像和性质

的有关信息介绍如下:

指数函数的图像和性质

指数函数的性质

1、定义域:R.

2、值域:(0,+∞).

3、过点(0,1),即x=0时,y=1.

4、当a>1时,在R上是增函数;当0<a<1时,在R上是减函数.

5、函数图形都是上凹的。

6、函数总是在某一个方向上无限趋向于X轴,并且永不相交。

7、指数函数无界。

8、指数函数是非奇非偶函数

扩展资料

1、求函数y=(1-6(x-2))1/2的定义域和值域

解:(提示:本体为指数函数定义域和值域问题)依题意,

1-6(x-2)≥0,

解得:x-2≤0,即x≤2

所以函数的定义域为{x| x≤2},

令t=6(x-2),则0≤t≤1,所以:

y=(1-t)1/2,可得:0≤y≤1

所以函数的值域为{y|0≤x≤1}。

2、已知(a2+2a+5)3x>(a2+2a+5)(1-x),则x的取值范围是是什么。

解:因为a2+2a+5=(a+1)2+4 > 0,由指数函数单调性质可知:

∴3x > 1-x

解得x>1/4(提示:本体为不等式与指数函数单调性综合问题)

所以x的取值范围为{x|x>1/4}。

参考资料来源:

(1) 指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。

(2) 指数函数的值域为(0, +∞)。

(3) 函数图形都是上凹的。

(4) a>1时,则指数函数单调递增;若0

图2 指数函数增减性

(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7) 指数函数具有反函数,其反函数是对数函数。

(8) 指数函数无界。

(9)指数函数是非奇非偶函数。

扩展资料:

函数图像

(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。。

函数y=a^x(a>0,且a≠1)叫做指数函数。

指数函数:

已知函数f(x)=

(t为常数).

(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).

(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).

(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若可用上述方法构造出一个常数列{xn},求t的取值范围.

指数函数的图像和性质:

以上图片为个人Excel表格制作后截图所得.

(1)指数函数的定义域为R,值域为0到正无穷,是非奇非偶函数;

(2)指数函数的图像衡过点(0,1);

(3)当a>1时,函数为增函数,在定义域R上单调递增;当0<a<1时,函数为减函数,但定义域R上单调递减。